Oxygen Sensor Analyze

  OXYGEN SENSOR OUTPUT VOLTAGE ANALYSIS  
                     
                     
  Reference Chapter 7, Section 7.4, Feedback Systems, pp 301~304, "Internal Combustion Engine  
  Fundamentals" by John H. Heywood, copyright 1988 by McGraw-Hill, Inc.      
                     
  According to the above reference, an oxygen (O2) sensor puts out a voltage signal between zero  
  and 1.0 volt when hot enough, and there is a difference in the partial pressure of O2      
  between the exhaust gas and the outside atmosphere.  The O2 sensor is designed to produce  
  an electrochemical reaction, in two separate "gas chambers" (one in the exhaust gas, and one  
  in the outside atmosphere).  The O2 sensor is therefore an "oxygen concentration cell" which  
  generates its own voltage between a positive electrode (center wire) and negative electrode (sensor  
  body).  The solid electrolyte is yttria (Y2O3) stabilized zirconia (ZrO2) ceramic, and the electrodes  
  are Platinum coated, non-corrosive metal.  This particular electrochemical reaction produces four  
  free electrons during equilibrium which carry the current between the two metal electrodes.  
  The following formula represents the voltage output from an automotive O2 sensor:    
                     
  Voutput = (R*)(T) / (n)(F) * ln[(Po, air)/(Po, exh)] (known as the Nernst Equation)    
                     
  where,                  
  Voutput = O2 sensor's output voltage ( 0 to 1.0 volt is normal range)      
  R* = Universal Gas Constant = 8.3143 [Joule/gram-mole * K]        
  T = Temperature of the exhaust gas [Deg K]          
  n = number of electrons involved in the reaction = 4 in this case        
  F = Faraday constant = 96,480 [Coulomb/gram-mole]          
  Po, air = Partial pressure of O2 in the atmosphere [Pascals]        
  Po, exh = Partial pressure of O2 in the exhaust gas at temp [Pascals]      
  Note: Volt = [J/Coulomb]  or  Coulomb = J/V          
                     
  1.0 psi = 6894.8 Pascals = 6.8948 kPa            
  Per Heywood, atmospheric O2 partial pressure is ~ 20 kN/m^2 (kPa) = 20,000 Pa    
                     
  Assume that dry air at 1.0 Atm (sea-level), and 70 deg F is the reference point for the O2 sensor  
  output.  Calculate the partial pressure of O2 of this reference air to see if it agrees with Heywood.  
                     
  d = (1.3254 * inHg) / T              
  d = (1.3254 * 29.92) / (459.7 + 70) =  0.07486 lbm/ft^3          
                     
  O2 mass % = 23.142%,   Therefore,            
  density of O2 = (0.23142)(0.07486) =  0.01732 lbm/ft^3          
                     
  Po, air = (d)(R)(T)                
  In this case, R = (R*)/(M of O2) = (0.7302)/(32) = 0.02282 [(atm-ft^3) / (lbm-mole * R)]    
  (Po, air) will be in [atm] units              
                     
  Po, air = (0.01732)(0.02282)(529.7) =  0.20936 atm = 3.078 psi = 21219.4 Pa = 21.22 kPa  
  Therefore, Heywood's statement for (Po, air) and this calculation is very close.    
  Based on this, assume that Heywood's numbers in Figure 7-17 (p. 302) are based on dry air  
  at sea-level, and 70 deg F.              
                     
  According to Heywood, the partial pressure of O2 in exhaust gas changes very quickly at the  
  point of Stoichiometric combustion, and is also a function of the A/F ratio and the temperature  
  of the exhaust gas when the A/F ratio is greater than Stoichiometric (14.7 to 1), per Figure 7-17.  
                     
  The O2 partial pressure in the exhaust is a function of exhaust temperature in the richer than  
  Stoichiometric region.  Therefore, the O2 sensor output will be more dependent on the exhaust gas  
  temperature when the A/F ratio is less than Stoichiometric (rich burn) vs the lean burn region.  
                     
  Exhaust Gas Temperature Conversion            
  Deg C 500 750 900   Deg K = Deg C + 273.15    
  Deg K 773.15 1023.15 1173.15            
                     
  The following numbers are taken off Figure 7-17 (a) in Heywood.  Numbers are approximate readings
  off the graph (not calculated), and have been "tweaked" slightly to agree with the O2 sensor output   
  voltages shown in Heywood's corresponding graph in Figure 7-17 (b).      
                     
  O2 Partial Pressure in Exhaust Gas, (Po, exh) [Pascals]        
    Exhaust Gas Temp [Deg K]            
  A/F 773.15 1023.15 1173.15            
  10.3 2.00E-22 1.00E-14 2.00E-11            
  11.8 8.00E-22 3.00E-14 6.00E-11            
  13.2 6.00E-21 2.00E-13 6.00E-10            
  14.7 5.00E-18 5.00E-11 1.00E-07 (Po, exh) increases to ~50 Pa on the lean end of  
  14.7 50 50 50 Stoichiometric before increasing above an A/F = 14.7.  
  16.2 1500 1500 1500 In the leaner than Stoichiometric region, (Po, exh) does
  17.6 4000 4000 4000 not change with exhaust temperature.    
  19.0 7000 7000 7000            
                     
  Calculate the O2 sensor output voltage to see if it agrees with Heywood's chart in Figure 7-17 (b),  
  using the Nernst Equation.              
                     
  Voutput = (R*)(T) / (n)(F) * ln[(Po, air)/(Po, exh)]          
  Use reference O2 of dry air at sea-level and 70 deg F, then (Po, air) = 21,219 Pa    
  R = Universal Gas Constant = 8.3143 [(Joule/gram-mole * K)]        
  n = number of electrons involved in the reaction = 4 in this case        
  F = the Faraday constant = 96,480 Coulomb/gram-mole        
                     
  O2 Sensor Output [Volts]              
    Exhaust Gas Temp [Deg K]            
    773.15 1023.15 1173.15            
  A/F 500 C 750 C 900 C            
  10.3 0.998 0.930 0.874            
  11.8 0.975 0.906 0.847            
  13.2 0.942 0.864 0.788            
  14.7 0.830 0.742 0.659 Rich end of Stoichiometric      
  14.7 0.101 0.133 0.153 Lean end of Stoichiometric      
  16.2 0.044 0.058 0.067            
  17.6 0.028 0.037 0.042            
  19.0 0.018 0.024 0.028            
                     
                     
                     
                     
                     
                     
                     
  Graph of Calculated O2 Sensor Output Voltage        
 
 
                 
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
                     
  Now, verify what effect there is on the O2 sensor voltage output if there is a large change in atmosphere
  oxygen level due to altitude and/or humidity.  This will change the (Po, air) value in the Nernst Equation
  for the O2 sensor voltage output.  The actual A/F ratio will remain constant because the FD maintains a
  constant absolute manifold pressure (and therefore charge density) by increasing boost pressure with
  altitude.  Assume that the car is at an elevation of 7000 feet, and the air is dry (no humidity) at 70 deg F.
  The humidity ratio at this temperature is small and will be neglected to simplify this analysis.  Any humidity
  would only slightly reduce the atmospheric oxygen level, and hence the partial pressure of O2 (Po, air).
                   
                     
  Find the partial pressure of O2 in this air due to decreased atmospheric pressure.    
                     
  Po, air = 11.34 psia = 23.09 inHg at 7000 ft (From another spreadsheet)      
                     
  d = (1.3254 * inHg) / T              
  d = (1.3254 * 23.09) / (459.7 + 70) =  0.05778 lbm/ft^3          
                     
  O2 mass % = 23.142%,   Therefore,            
  density of O2 = (0.23142)0(0.05778) =  0.01337 lbm/ft^3        
                     
  Po, air = (d)(R)(T)                
  In this case, R = (R*)/(M of O2) = (0.7302)/(32) = 0.02282 [(atm-ft^3) / (lbm-mole * R)]    
  (Po, air) will be in [atm] units              
                     
  Po, air = (0.01337)(0.02282)(529.7) =  0.16162 atm = 2.376 psi = 16,380 Pa = 16.38 kPa  
                     
  Again, use the Nernst Equation, but use 16,380 Pa for the atmosphere O2 partial pressure.  
                     
  Voutput = (R*)(T) / (n)(F) * ln[(Po, air)/(Po, exh)]          
  Use reference O2 of dry air at sea-level and 70 deg F, then (Po, air) = 16,380 Pa    
  R* = Universal Gas Constant = 8.3143 [(Joule/gram-mole * K)]        
  n = number of electrons involved in the reaction = 4 in this case        
  F = the Faraday constant = 96,480 Coulomb/gram-mole        
                     
                   
  O2 Sensor Output [Volts] @ 7000 ft            
    Exhaust Gas Temp [Deg K]     O2 Sensor Volts @ Sea-Level  
    773.15 1023.15 1173.15     for Comparison to 7000 ft  
  A/F 500 C 750 C 900 C     A/F 500 C % Change  
  10.3 0.994 0.924 0.868     10.3 0.998 0.43  
  11.8 0.971 0.900 0.840     11.8 0.975 0.44  
  13.2 0.937 0.858 0.782     13.2 0.942 0.46  
  14.7 0.825 0.737 0.653 Rich end of Stoich 14.7 0.830 0.52  
  14.7 0.096 0.128 0.146 Lean end of Stoich 14.7 0.101 4.28  
  16.2 0.040 0.053 0.060     16.2 0.044 9.77  
  17.6 0.023 0.031 0.036     17.6 0.028 15.51  
  19.0 0.014 0.019 0.021     19.0 0.018 23.34  
                     
  As can be seen between the two tables above (at Texh = 500 C), that the O2 sensor output voltage has
  not changed much on the rich side of Stoichiometric when the car is at 7000 ft elevation, even though
  the amount of oxygen mass in the air has decreased by approximately 23%.      
  Therefore, if you are at a high elevation, and in a WOT escapade watching the A/F meter, you can  
  feel confident that its output has not shifted due to the high elevation causing a lack of O2 in the air.
  A correctly functioning O2 sensor and A/F meter should give accurate A/F readings in the rich  
  region of Stoichiometric regardless of elevation or humidity.        
                     
  A larger concern is the O2 sensor voltage shift in the rich A/F region due to increasing exhaust gas  
  temperatures.  It is unknown at this time if the stock FD O2 sensor exhibits this phenomena.  If it does,
  you could see as much as ~0.15 volt difference (3 LEDs out of 20 on A/F meter) between 500 C and
  750 C exhaust gas temperature, at an A/F of ~13 to 1.          
                     
                     
  Plot showing the negligible shift in an O2 sensor due to oxygen reduction from elevation and/or  
  humidity.